

Abstract— Neural networks (NNs) were evolved to learn to
play the zero-sum game Othello (also known as reversi) without
relying on a-priori or expert knowledge. Such neural networks
were able to discover game-playing strategies through co-
evolution, where the neural networks just play against
themselves across generations. The effect of the spatial
processing layer on evolution was investigated. It was found
that the evolutionary process was crucially dependent on the
way in which spatial information was presented. A simple
sampling pattern based on the squares attacked by a single
queen in Chess resulted the networks converging to a solution
in which the majority of networks, handicapped by playing
Black and playing without using any look-ahead algorithm,
could defeat a positional strategy using look-ahead at ply-
depth=4 and a piece-differential strategy using look-ahead at
ply-depth=6. Improvement and convergence was observed to
be accompanied by an gradual increase in the survival time of
neural network strategies from less than 10 generations to
about 600 generations. Surprisingly, evolved neural networks
had difficulty in defeating a simple mobility strategy playing at
a ply-depth=2. This work suggests that in deciding a suitable
way to spatially sample a board position, it is important to
consider the rules of the game.

I. INTRODUCTION

AMES have been widely used as a testbed for self-
learning techniques as there are a specific set of (1)
rules that govern the game, (2) behaviors (rules for

making legal moves), and (3) goals (to win), as well as, a
diverse environment of players. Considerable attention has
been received by zero sum board games such as checkers,
chess and Othello. In the middle of 1990, Leouski and
Utgoff [1] used temporal difference learning (TDL) to aid a
neural network to learn to play Othello. Several years later,
Fogel and coworkers [2] showed that multilayer perception
(MLP) with a spatial layer can be evolved to play checkers
at a high level without expert knowledge. Chong et. al. [3]
showed that a similar architecture having a similar spatial
layer could be evolved as an evaluation function for the
game of Othello. In addition, they observed changes in
strategies being adopted by the neural network by making
use of fixed algorithms playing at a variety of ply-depths. In
recent research, Lucas [4] showed that a n-tuple systems

Manuscript received October 31, 2008. This work was supported in part
by the National Science Council of the Republic of China under Grant #97-
2221-E-155-061

S. Y. Lin is with the Department of Electrical Engineering, Yuan Ze
University, Taoyuan 320, Taiwan (e-mail: xinyu0123@gmail.com).

 J. D. White is with the Department of Electrical Engineering, Yuan
Ze University, Taoyuan 320, Taiwan (phone: 886-3-463-8800x7514; fax:
886-3-451-4281 e-mail: whitejd@xiaotu.com).

having ~15,000 weights could be used as position value
functions for the game of Othello. Coupled with TDL, good
performance was obtained after only 500 generations at the
cost of having ~15,000 adjustable weights.

In this paper we report on the effects of replacing the
spatial input layer of Chong et. al. [3] with one based on the
rules of the game of Othello coupled with a modification of
the selection method from unfair to fair tournament. We
have found that under these changes successful strategies
can be evolved that are equal or better than those evolved
using the previous architecture. In addition, these evolved
strategies require significantly fewer adjustable weights
(~4700). Finally, we show that once successful strategies
have been identified, there is a gradual reduction of noise
and the rate of evolution slows as seen in an extension of the
survival times of neural networks which slowly rises from
less than 10 for the reported architecture.

I.BACKGROUND

Othello is a popular zero-sum game in which two-players,
designated Black and White, alternatively place their pieces
on an eight-by-eight board. Starting from the initial board
position in which each player has two pieces on the board,
the Black player makes the first move. A legal move is one
in which the new piece is placed adjacent (horizontally,
vertically, or diagonally) to an opponent's existing piece in
such a way that at least one of the opponent's pieces lies
between one of the player's existing pieces and the new
piece. The move is completed when the surrounded pieces
are removed and replaced with pieces of the player's own
color. The game is completed when neither player can make
a legal move, which, in general, occurs when there are no
empty squares remaining on the board. The winner is the
player with the most pieces on the board at the end of the
game. In the event that both players possess an equal
number of pieces, both players are awarded a draw.

This game is an interesting test-case for evolutionary
programming as, unlike in other games of skills such as
checkers and chess, who is winning, as defined by the
number of pieces on the board, can vary drastically from
move to move.

Spatial Processing Layer Effects on the Evolution of Neural
Networks to Play the Game of Othello

S.Y. Lin and J.D. White, Member, IEEE

G

646978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

II. IMPLEMENTATION

Three modules, consisting of a neural network-based
evaluation function, tournament-based selection of the next
generation, and a mutation module that is applied to the
neural networks, are interfaced together to simulate
evolution of a population of neural networks (game-playing
strategies). This evolutionary procedure is summarized in
Fig. 1 for a population of 4 neural networks. The networks
compete against each other in a tournament. Based on the
outcome, the two losing networks are eliminated, while the
top two ranked networks not only survive to the next
generation, but also give birth, by mutation, to a single child
each. This becomes the next generation. An additional
module, including a search algorithm and a variety of fixed
strategies, acts as an external observer, monitoring but not
participating in, the evolutionary process.

In previous works, a search algorithm based on the Fail-
Soft Alpha-Beta (FAB) Algorithm [5], a basic variant of the
minimax algorithm that employs the alpha-beta pruning
method, was used in conjunction with the evaluation
function [2][3]. In general, this approach is used to search
for the best possible move based on game heuristics
(evaluations) provided by the evaluation function. In this
work, during evolution, this is disabled -- the neural network
based evaluation function is only provided with the present
board's spatial configuration and is not allowed to look-
ahead at possible future positions. For monitoring and
evaluation of the evolution of the neural network based
evaluation functions, it is used with a variety of fixed
strategies. With each strategy, the ply-depth is gradually
increased until the neural-network strategy is defeated.

The complete program was written by ANSI-C and
compiled with GCC. The simulation was run for ten
thousand generations on 2.4GHz Intel processor in 4 days.
Each section of the program is discussed in detail below.

A. Neural Network Architecture for evaluation function
The neural network functions primarily as an artificial

brain that provides strategies required to play Othello
effectively through its evaluation of the board positions

presented to it. The neural network model is a feed-forward
multilayer perception (MLP) based on that used by Fogel's
group [2] for checkers and applied by Chong et al [3] to
Othello or Reversi. The model is consists of one input layer,
one output layer and three hidden layers. Fig. 2 illustrates
the neural network model that is used for the evaluation

Fig. 3. Sampling procedure of Q-position pattern in the spatial layer.
Every single pattern is based on the base pattern shown in Fig. 2. (a)
Central Point of the base pattern mapped onto the top left corner of the
Othello board (1, A). (b) Central Point of the base pattern mapped onto
square (1, B). (c) Central Point of the base pattern mapped onto square (6,

Fig. 1 Flow of evolutionary procedure illustrating key program modules.

Fig. 2 Model of the neural-network-based evaluation function. Given any
board pattern as a 2D vector. The first hidden layer (spatial preprocessing
layer) consist of 65 output nodes, 64 output nodes from Q-position patterns,
one output nodes from full board pattern which acts as weighted piece
counter (WPC). The outputs of these nodes were then passed to two
additional hidden layers, consisting of 40 and 10 nodes, respectively. The
final output node represents the evaluation of the board position by the
neural network. Unlike in previous published implementations, the piece
differential is not given as an input to the output node.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 647

function.
The input layer is designed to represent to the Othello

board. It is an 8x8 vector consisting of 64 components to
corresponding to the 8x8 Othello board positions. Each
component in the 2D vector can take on the elements {-1, 1,
0}, where “-1” was the value assigned for black piece, “1”
was the value assigned for white piece and “0” represented
an empty square.

The first hidden layer is the spatial preprocessing layer --
designed for processing, analyzing and emphasizing the
most important areas on board. The sampling pattern is the
key change relative to the models used for Checkers [2] and
Othello [3]. In the previous works, the spatial processing
method was sub-squares sampling. This pattern is related to
the rules of checker but not to rules of Othello. That is, for
checkers, the key special information required is the status
of adjacent diagonal squares as jumps are made diagonally.
In other words, any move changes the status of these
squares. In contrast to checkers, in Othello, the rules indicate
that placing a piece on any given square affects the status of
squares in the horizontal, vertical and diagonal directions --
a total of eight directions. So, just as sub-squares is a natural
pattern for Checkers, the queen attack positions (in
International Chess, henceforth called Q-position patterns)
is a natural pattern for Othello.

The sampling procedure of the Q-position pattern is
illustrated in Fig. 3 for four different squares. For example,
in Fig. 3a the central point of the base Q-position pattern is
mapped to the top-left corner of the input board. The
occupancy of 22 squares thus forms the input to this node.
Similarly, in Fig. 3b, the pattern is mapped to the second
square in the top row. Again the occupancy of 22 squares
forms the input. This is repeated for all 64 squares of the
Othello board. In addition, the full board pattern, which
serves the function of a weighted piece counter (WPC), is
sampled. As shown in Fig. 1, there are total 65 patterns in

this spatial processing layer (hidden layer one) having a total
of 1584 inputs. The second and third layers consist of 40 and
10 nodes, respectively. The output of every first layer node
is connected to the input of each second layer node, the
output of each second layer node is connected to the input of
each third layer node. Finally the output of each third layer
node forms the input of a single output node which provides
a scalar assessment of the value of a the inputted board
configuration.. Note, that in contrast to previous work [3],
piece differential information is not given to the output node,
forcing the neural network to learn to defeat the piece
maximum strategy naturally.

In the above fully connected architecture, the total number
of weights and biases (denoted wi(j)): [(1649 in hidden layer
one)] + [(40 nodes in hidden two) × (65 inputs + 1 bias)] +[
(10 nodes in hidden layer 3) × (40 inputs + 1 bias)] + [(1
node in output layer) × (10inputs + 1 bias)] = 4710. For
each hidden node and for the output node, the hyperbolic
tangent (bounded by +/-1) function is used with a variable
bias. The initial population was created by random
generation of the weights and biases by sampling from a
uniform distribution over [-0.2, 0.2]. We note that the total
number of weight and bias is quite small compared to
previous architecture (5900 weights and biases) saving
calculation time [3].

B. Tournament Selection
In order for evolution to occur, in each generation, a

selection mechanism must be employed to determine each
neural network’s overall fitness relative to the whole
population. This allows parents to be selected for the next
generation.

In the current simulation, a fair tournament selection
model is used [6]. The population at every generation
consists of 100 neural networks (strategies): fifty parents and

Fig. 4. Evolution in playing ability of the parent neural networks with
generation. Networks were evaluated every 50 generations by playing
against the fixed positional strategy player, with the ply-depth being
increased in steps of two until the network lost. Number of networks that
can defeat the fixed strategy player playing at ply-depth of (a) two (b) four
and (c) six.

Fig. 5. Evolution in playing ability of the parent neural networks with
generation. Networks were evaluated every 50 generations by playing
against the fixed piece differential strategy player, with the ply-depth being
increased in steps of two until the network lost. Number of networks that
can defeat the fixed strategy player playing at ply-depth of (a) two (b) four
and (c) six. The comparison stops at a ply-depth of six because at ply-depth
of eight, the minimax algorithm was unable to run in a reasonable time.

648 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

fifty offspring. An additional ten offspring are generated that
are used for competition only. All 100 networks play against
a total of 10 games against the test offspring -- 5 as white
and 5 as black. As each network plays against the same 10
neural networks, the selection method is completely fair.
Strategies are assigned points not on the basis of
win/loss/draw but rather by the number of pieces by which
each game is won or lost. The top scoring 50 neural
networks are chosen as the next generation parents.

We note that this is in contrast to the unfair tournament
selection used in the work of Chong [3] where, for every
neural network in each generation, not only are opponents
randomly chosen, but also the number of games in which a
strategy competes is random.

C. Mutation
In the results presented here, the neural networks are not

learning in the traditional fashion. Rather the evolution of
the neural networks is accomplished through co-evolution.
In other words, offspring are generated from parent neural
networks by Gaussian mutation. To aid in this each network
is assigned its own self-adaptive parameter vector (si(j)),
which is initially set to 0.05 for consistency with the range
of initial weights and biases.

Offspring (consisting of weights and bias terms, as well as
self-adaptive parameter vector) were generated through self-
adaptive Gaussian mutation from each parent, respectively,
according to the following equations:

)1,0()()()(

))1,0(exp()()(
''

'

jiii

jii

Rjsjwjw

Rjsjs

×+=

××= τ

where i=1...50 denotes the neural network being evolved,
j=1...4710 spanning across the total number of weights and
biases needed for each network being involved. Rj is a
standard Gaussian random variable re-sampled for every j
and

08535.021 =→=− ττ jR

D. External Observers
During simulation, neural networks (after tournament

selection) were compared with computer players (external
observers) through Othello game competitions to provide an
independent monitor of the “fitness” of the population as
evolution progressed. The computer player employed the
Fail-Soft Alpha-Beta (FAB) Algorithm [5] at variable ply-
depths, along with a deterministic evaluation function or
strategy. Comparison started with each neural network
competing with the computer player playing at ply-depth of
zero (the same ply-depth used by neural network). For every
network win, the relative level of play of the external
observer was raised by increasing its ply-depth by two. It
should be emphasized that the results of this competition are
not available to the neural networks themselves.

Four distinct fixed strategies were used to monitor the

Fig. 7. Evolution in playing ability of the networks within the range
4500 to 5600 generations. Networks were evaluated at every generation
by playing against the piece differential strategy player, with the ply-depth
being increased in steps of two until the network lost. Number of networks
that can defeat the fixed strategy player playing at ply-depth of (a) two (b)
four and (c) six.

Fig. 6. Evolution in playing ability of the networks within the range
4500 to 5600 generations. Networks were evaluated at every generation
by playing against the positional strategy player, with the ply-depth being
increased in steps of two until the network lost. Number of networks that
can defeat the fixed strategy player playing at ply-depth of (a) two (b)
four and (c) six.

Fig. 8. The average survival time in generations of the neural networks as a
function of generation

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 649

evolution of the neural networks: a positional strategy
(evaluation function based on the positional component of
Iago's strategy of Iago [7]), a piece differential player who
for a given board position sought to maximize the number of
pieces the board, a mobility player who seeks to maximize
the number of available moves and the complete expert
strategy of Iagno version 22.3 (June 30, 2008) [8] During
the fixed strategy comparison, all the neural networks played
black (generally considered to be a handicap compared to
the white) and used ply-depth of zero.

II. RESULTS
Fig. 4 compares the performance of the neural networks

with that of a computer player using the positional strategy
to evaluate the quality of a move, while Fig. 5 compares the
performance of the neural network with that of a computer
player using piece differential as the sole means of
evaluating the quality of a move.

Let us consider first the performance of the neural
networks relative to the positional player. After only 100
generations, over half of neural networks have learned to
defeat the positional strategy playing at a ply-depth of two
despite the fact that they are playing black. While a majority
of networks quickly learn to defeat the ply-depth=2, it takes
another 6000 generations for essentially the whole
population to consistently maintain this level of
performance. Correlated to this is the fact that only after
4000 generations, do we see performance improving such
that the networks that a shift from defeating ply-depth of two
to ply-depth of four takes place. Around generation 4500
there sudden improvement with some neural networks
learning to defeat the positional player with a ply-depth=6.
As can be seen in the figure the lifespan of these exceptional
neural networks is quite short with the play of the best
networks dropping back quickly. As will be discussed later,
we believe that this is due to the networks becoming overly
specialized at this point -- developing a specialized strategy
to defeat the positional player that is not applicable for other
playing strategies. Over the next 3500 generations an
increasing number of networks develop the ability to defeat
the ply-depth=4 positional player. By generation 7000
essentially all networks have obtained this ability. It is
significant to note that this ability is not lost over time.
However, despite one attempt at around generation 7000 it is
not possible for the networks to defeat the ply-depth=6
player.

Fig. 5 shows that these same neural networks evolved at
the end to outperform the piece differential as well. By the
100th generation, over 25 neural networks can defeat ply-
depth two piece differential strategy. However, in contrast
to their performance against the positional player, they are
unable to maintain this level with the level of play appearing
to be sporadic., By generation 3000, the neural networks
appear to loose all ability to defeat the piece differential
player. It is only in the range between generation 4000 to
5000 does the play relative to the piece differential player

improve drastically. In contrast to play with the positional
player, in which networks first learned to defeat a ply-
depth=2 player before learning to defeat the ply-depth=4
player, there is a sudden shift being unable to defeat the ply-
depth=2 player to being able to defeat a ply-depth=6 player.

In order to investigate the change in playing competence
around generation 4500, we have increased the sampling rate
from every 50 to every generation in this region. so as to be
able to see how the strategy improvement occurred. Figures
5 and 6 compare the performance of the neural networks
with that of a computer player using the positional strategy
and piece differential strategies, respectively. Considering
first the positional strategy. Against ply-depth of two
positional strategy (Fig.6b), the key change of the neural
networks’ ability happened over 40 generations starting from
generation 4525. This improvement is quickly followed,
with a delay of about 10 generations, by a considerable
portion of the networks learning to defeat the positional
player playing at ply-depth=4. The improvement in play
relative to the piece-differential player is not, surprisingly,
coincident with the improvement seen with respect to play
against the positional player but rather delayed by about 15
to 20 generations. Perhaps more amazing is the fact that the
jump is from not being able to defeat a ply-depth=2 strategy
to being able to defeat a ply-depth=6 strategy and that this
ability is gained by about 50% of the population in only
about 11 generations. We note that the networks have
gained this ability without explicitly being given any piece
differential information as was the case in previous
simulations [3].

Next we compared the ability of the neural networks with
the simple mobility strategy. At the beginning, the networks
slowly learn to defeat pure mobility strategies with
considerable improvement being seen in the range from
generation 4000 to generation 5000. However, after this
generation, despite improved play against the positional and
piece differential players, the networks seem to have lost all
ability to defeat the mobility strategy operating at a ply-
depth greater than themselves. In addition, they never regain
the ability. Finally, in competition with the general expert
strategy Iagno [8], the evolved neural networks exhibited
good performance when playing at equal ply-depths.

In Fig. 8 we plot the average survival time of the neural
networks as a function of generation. Before the generation
4000, the average survival time is less than 10 generations.
After the improvement in play occurs (~generation 5000) the
survival time starts to slowly increase reaching over 600
generations by generation 10000 when the simulation was
stopped. At the 10000th generation, the average survived
times is already reach 600 generation. It would seem that
the evolutionary algorithm has converged to a solution that
can defeat the positional strategy playing at ply-depth=4, the
piece differential strategy playing at ply-depth=6 and the
mobility strategy playing at ply-depth=0. In repeating
Chong's simulation [3], we found no increase in network
survival time over the simulation window.

650 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

III. DISCUSSION
In this paper we have compared the performance of our

neural networks with four different strategies. One question
that arises with regard to these strategies is whether there is
one best strategy. Unfortunately this is a difficult question.
Playing at a ply-depth=0, a White positional player can
defeat the piece differential strategy but loses to the mobility
strategy. The White piece differential player can defeat both
the positional and mobility strategies, while the White
mobility strategy can defeat the positional and piece
differential strategies. In addition, the positional player can,
on occasion, defeat the combined expert strategy used in
Iagno (Iagno incorporates a series of 8 random moves in its
opening). However, at a ply-depth of 2, the White positional
player loses to the piece differential player. This strongly
suggests that there is not one unique strategy that can defeat
all comers.

The current simulation has shown that while a given
neural network strategy cannot maintain a high level of play
against all opposing fixed strategies, networks can be
evolved to play reasonable games against all strategies while
specializing in defeating some strategies. (Note that neural
networks control the weaker black player when competing
with the fixed strategies.) The fact that the evolved neural
networks perform well against the positional player is not
surprising as they have been given spatial information and
are allowed to evolve their own weighted piece counter. On
the one hand, it is not unsurprising that they had difficulties
when playing against a mobility player using a high ply-
depth of look-ahead as the networks were not given any
mobility information. On the other hand, it is quite
interesting that without piece differential information the
neural networks can evolve to crush the piece-differential
player.

In order to compare with the results for the spatial
processing layer of Fogel [2] and Chong [3] it is necessary to
speak in terms of the difference in ply-depth used by the
strategies. In other words, if we define the ply-depth being
played by the neural networks as n, the neural networks in
Chong's work learned to play at a level of n+4 against both
piece-differential and positional players in a period of 1000
generations. As can be seen in their work, there is
considerable noise even until the end of the simulation. In
contrast, in the current simulation, using a different spatial
layer and neural network having 50% less nodes, and in
which comparison was made with a stronger positional
player, networks performed at a level of n+4 and n+6 against
the positional and piece-differential players respectively. In
addition, the more natural sampling pattern coupled with a
fair tournament selection reduced noise allowing the
network strategies to converge as indicated by the increase
network survival time.

REFERENCES

[1] A.E.Leouski, P. E. Utgoff, What a Neural Network Can Learn about
Othello, Technical Report, Dept of Computer Science, University of
Massachusetts, Amherst, MA, January 20, 1996

[2] D.B. Fogel, Blondie24: Playing at the Edge of AI, San Francisco,CA:
Morgan Kaufmann, 2002.

[3] S.Y. Chong, M.K. Tan, J. D. White, Observing the Evolution of
Neural Networks Learning to Play the Game of Othello, Evolutionary
Computation, IEEE Transactions on, 9, 240-251 2005.

[4] Lucas, S. M. Learning to Play Othello with N-Tuple Systems,
Australian Journal of Intelligent Information Processing Systems,
Special Issue on Game Technology, Vol 9, No. 4 pp 01--20, 2007.

[5] H. Kaindle, “Tree searching algorithms,” Computers, Chess, and
Cognition, Marsland TA and Schaeffer J (eds.), Springer, New York,
pp. 133-168, 1990.

[6] A. Sokolov, D. Whitley, Andre’ da Motta Salles Barreto, "A note on
the variance of rank-based selection strategies for genetic algorithms
and genetic programming", Genetic Programming and Evolvable
Machines,Vol 8, No.3, pp.221-237, 2007

[7] P. S. Rosenbloom, “A world-championship-level Othello program,
Artif. Intell., vol. 19, pp. 279–320, 1982.

[8] Iagno version 22.3 (Released June 30, 2008)
Downloaded from http://live.gnome.org/Iagno

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 651

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

