
 

Abstract— Neural networks (NNs) were evolved to learn to 
play the zero-sum game Othello (also known as reversi) without 
relying on a-priori or expert knowledge.  Such neural networks 
were able to discover game-playing strategies through co-
evolution, where the neural networks just play against 
themselves across generations. The effect of the spatial 
processing layer on evolution was investigated.  It was found 
that the evolutionary process was crucially dependent on the 
way in which spatial information was presented.  A simple 
sampling pattern based on the squares attacked by a single 
queen in Chess resulted the networks converging to a solution 
in which the majority of networks, handicapped by playing 
Black and playing without using any look-ahead algorithm, 
could defeat a positional strategy using look-ahead at ply-
depth=4 and a piece-differential strategy using look-ahead at 
ply-depth=6.  Improvement and convergence was observed to 
be accompanied by an gradual increase in the survival time of 
neural network strategies from less than 10 generations to 
about 600 generations. Surprisingly, evolved neural networks 
had difficulty in defeating a simple mobility strategy playing at 
a ply-depth=2.   This work suggests that in deciding a suitable 
way to spatially sample a board position, it is important to 
consider the rules of the game. 

I. INTRODUCTION

AMES have been widely used as a testbed for self-
learning techniques as there are a specific set of (1) 
rules that govern the game, (2) behaviors (rules for 

making legal moves), and (3) goals (to win), as well as, a 
diverse environment of players. Considerable attention has 
been received by zero sum board games such as checkers, 
chess and Othello.  In the middle of 1990, Leouski and 
Utgoff [1] used temporal difference learning (TDL) to aid a 
neural network to learn to play Othello.  Several years later, 
Fogel and coworkers [2] showed that multilayer perception 
(MLP) with a spatial layer can be evolved to play checkers 
at a high level without expert knowledge. Chong et. al. [3] 
showed that a similar architecture having a similar spatial 
layer could be evolved as an evaluation function for the 
game of Othello.  In addition, they observed changes in 
strategies being adopted by the neural network by making 
use of fixed algorithms playing at a variety of ply-depths.  In 
recent research, Lucas [4] showed that a n-tuple systems 
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having ~15,000 weights could be used as position value 
functions for the game of Othello.  Coupled with TDL, good 
performance was obtained after only 500 generations at the 
cost of having ~15,000 adjustable weights.  

In this paper we report on the effects of replacing the 
spatial input layer of Chong et. al. [3] with one based on the 
rules of the game of Othello coupled with a modification of 
the selection method from unfair to fair tournament.  We 
have found that under these changes successful strategies 
can be evolved that are equal or better than those evolved 
using the previous architecture. In addition, these evolved 
strategies require significantly fewer adjustable weights 
(~4700).  Finally, we show that once successful strategies 
have been identified, there is a gradual reduction of noise 
and the rate of evolution slows as seen in an extension of the 
survival times of neural networks which slowly rises from 
less than 10 for the reported architecture. 

I.BACKGROUND

Othello is a popular zero-sum game in which two-players, 
designated Black and White, alternatively place their pieces 
on an eight-by-eight board.  Starting from the initial board 
position in which each player has two pieces on the board, 
the Black player makes the first move.  A legal move is one 
in which the new piece is placed adjacent (horizontally, 
vertically, or diagonally) to an opponent's existing piece in 
such a way that at least one of the opponent's pieces lies 
between one of the player's existing pieces and the new 
piece. The move is completed when the surrounded pieces 
are removed and replaced with pieces of the player's own 
color.  The game is completed when neither player can make 
a legal move, which, in general, occurs when there are no 
empty squares remaining on the board.  The winner is the 
player with the most pieces on the board at the end of the 
game.  In the event that both players possess an equal 
number of pieces, both players are awarded a draw. 

This game is an interesting test-case for evolutionary 
programming as, unlike in other games of skills such as 
checkers and chess, who is winning, as defined by the 
number of pieces on the board, can vary drastically from 
move to move. 
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II. IMPLEMENTATION

Three modules, consisting of a neural network-based 
evaluation function, tournament-based selection of the next 
generation, and a mutation module that is applied to the 
neural networks, are interfaced together to simulate 
evolution of a population of neural networks (game-playing 
strategies).  This evolutionary procedure is summarized in 
Fig. 1 for a population of 4 neural networks. The networks 
compete against each other in a tournament.  Based on the 
outcome, the two losing networks are eliminated, while the 
top two ranked networks not only survive to the next 
generation, but also give birth, by mutation, to a single child 
each. This becomes the next generation.  An additional  
module, including a search algorithm and a variety of fixed 
strategies, acts as an external observer, monitoring but not 
participating in, the evolutionary process.   

In previous works, a search algorithm based on the Fail-
Soft Alpha-Beta (FAB) Algorithm [5], a basic variant of the 
minimax algorithm that employs the alpha-beta pruning 
method, was used in conjunction with the evaluation 
function [2][3]. In general,  this approach is used to search 
for the best possible move based on game heuristics 
(evaluations) provided by the evaluation function. In this 
work, during evolution, this is disabled -- the neural network 
based evaluation function is only provided with the present 
board's spatial configuration and is not allowed to look-
ahead at possible future positions. For monitoring and 
evaluation of the evolution of the neural network based 
evaluation functions, it is used with a variety of fixed 
strategies.  With each strategy, the ply-depth is gradually 
increased until the neural-network strategy is defeated.  

The complete program was written by ANSI-C and 
compiled with GCC. The simulation was run for ten 
thousand generations on 2.4GHz Intel processor in 4 days.   
Each section of the program is discussed in detail below. 

A.  Neural Network Architecture for evaluation function 
The neural network functions primarily as an artificial 

brain that provides strategies required to play Othello 
effectively through its evaluation of the board positions 

presented to it.   The neural network model is a feed-forward 
multilayer perception (MLP) based on that used by Fogel's 
group [2] for  checkers and applied by Chong et al [3] to 
Othello or Reversi. The model is consists of one input layer, 
one output layer and three hidden layers. Fig. 2 illustrates 
the neural network model that is used for the evaluation 

Fig. 3.  Sampling procedure of Q-position pattern in the spatial layer.
Every single pattern is based on the base pattern shown in Fig. 2. (a) 
Central Point of the base pattern mapped onto the top left corner of the 
Othello board (1, A).  (b) Central Point of the base pattern mapped onto 
square (1, B).  (c) Central Point of the base pattern mapped onto square (6, 

Fig. 1  Flow of evolutionary procedure illustrating key program modules.  

Fig. 2 Model of the neural-network-based evaluation function. Given any 
board pattern as a 2D vector. The first hidden layer (spatial preprocessing 
layer) consist of 65 output nodes, 64 output nodes from Q-position patterns, 
one output nodes from full board pattern which acts as weighted piece 
counter (WPC). The outputs of these nodes were then passed to two 
additional hidden layers, consisting of 40 and 10 nodes, respectively. The 
final output node represents the evaluation of the board position by the 
neural network. Unlike in previous published implementations, the piece 
differential is not given as an input to the output node.
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function. 
The input layer is designed to represent to the Othello 

board. It is an 8x8 vector consisting of 64 components to 
corresponding to the 8x8 Othello board positions. Each 
component in the 2D vector can take on the elements {-1, 1, 
0}, where “-1” was the value assigned for black piece, “1” 
was the value assigned for white piece and  “0” represented 
an empty square. 

The first hidden layer is the spatial preprocessing layer -- 
designed for processing, analyzing and emphasizing the 
most important areas on board. The sampling pattern is the 
key change relative to the models used for Checkers [2] and 
Othello [3]. In the previous works, the spatial processing 
method was sub-squares sampling.  This pattern is related to 
the rules of checker but not to rules of Othello. That is, for 
checkers, the key special information required is the status 
of adjacent diagonal squares as jumps are made diagonally. 
In other words, any move changes the status of these 
squares. In contrast to checkers, in Othello, the rules indicate 
that placing a piece on any given square affects the status of 
squares in the horizontal, vertical and diagonal directions --  
a total of eight directions.  So, just as sub-squares is a natural 
pattern for Checkers, the queen attack positions (in 
International Chess, henceforth called Q-position patterns)  
is a natural pattern for Othello. 

The sampling procedure of the Q-position pattern is 
illustrated in Fig. 3 for four different squares. For example, 
in Fig. 3a the central point of the base Q-position pattern is 
mapped to the top-left corner of the input board. The 
occupancy of 22 squares thus forms the input to this node. 
Similarly, in Fig. 3b, the pattern is mapped to the second 
square in the top row.  Again the occupancy of 22 squares 
forms the input.  This is repeated for all 64 squares of the 
Othello board.  In addition, the full board pattern, which 
serves the function of a weighted piece counter (WPC), is 
sampled. As shown in Fig. 1, there are total 65 patterns in 

this spatial processing layer (hidden layer one) having a total 
of 1584 inputs. The second and third layers consist of 40 and 
10 nodes, respectively.  The output of every first layer node 
is connected to the input of each second layer node, the 
output of each second layer node is connected to the input of 
each third layer node.  Finally the output of each third layer 
node forms the input of a single output node which provides 
a scalar assessment of the value of a the inputted board 
configuration.. Note, that in contrast to previous work [3], 
piece differential information is not given to the output node, 
forcing the neural network to learn to defeat the piece 
maximum strategy naturally. 

In the above fully connected architecture, the total number 
of weights and biases (denoted wi(j)):  [(1649 in hidden layer 
one)] + [(40 nodes in hidden two) × (65 inputs + 1 bias)] +[ 
(10 nodes in hidden layer 3) × (40 inputs + 1 bias)] + [(1 
node in output layer) × (10inputs + 1 bias)] = 4710.   For 
each hidden node and for the output node, the hyperbolic 
tangent (bounded by +/-1) function is used with a variable 
bias.  The initial population was created by random 
generation of the weights and biases by sampling from a 
uniform distribution over [-0.2, 0.2]. We note that the total 
number of weight and bias is quite small compared to 
previous architecture (5900 weights and biases) saving 
calculation time [3]. 

B.  Tournament Selection 
In order for evolution to occur, in each generation, a 

selection mechanism must be employed to determine each 
neural network’s overall fitness relative to the whole 
population.  This allows parents to be selected for the next 
generation.   

In the current simulation, a fair tournament selection 
model is used [6]. The population at every generation 
consists of 100 neural networks (strategies): fifty parents and 

Fig. 4. Evolution in playing ability of the parent neural networks with 
generation. Networks were evaluated every 50 generations by playing 
against the fixed positional strategy player, with the ply-depth being 
increased in steps of two until the network lost. Number of networks that 
can defeat the fixed strategy player playing at ply-depth of (a) two (b) four 
and (c) six. 

Fig. 5. Evolution in playing ability of the parent neural networks with 
generation. Networks were evaluated every 50 generations by playing 
against the fixed piece differential strategy player, with the ply-depth being 
increased in steps of two until the network lost. Number of networks that 
can defeat the fixed strategy player playing at ply-depth of (a) two (b) four 
and (c) six. The comparison stops at a ply-depth of six because at ply-depth 
of eight, the minimax algorithm was unable to run in a reasonable time.
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fifty offspring. An additional ten offspring are generated that 
are used for competition only. All 100 networks play against 
a total of 10 games against the test offspring -- 5 as white 
and 5 as black.  As each network plays against the same 10 
neural networks, the selection method is completely fair.  
Strategies are assigned points not on the basis of 
win/loss/draw but rather by the number of pieces by which 
each game is won or lost.   The top scoring 50 neural 
networks are chosen as the next generation parents.     

We note that this is in contrast to the unfair tournament 
selection used in the work of Chong [3] where, for every 
neural network in each generation, not only are opponents 
randomly chosen, but also the number of games in which a 
strategy competes is random. 

C.  Mutation 
In the results presented here, the neural networks are not 

learning in the traditional fashion. Rather the evolution of 
the neural networks is accomplished through co-evolution. 
In other words, offspring are generated from parent neural 
networks by Gaussian mutation. To aid in this each network 
is assigned its own self-adaptive parameter vector (si(j)), 
which is initially set to 0.05 for consistency with the range 
of initial weights and biases.  

Offspring (consisting of weights and bias terms, as well as 
self-adaptive parameter vector) were generated through self-
adaptive Gaussian mutation from each parent, respectively, 
according to the following equations: 
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where i=1...50 denotes the neural network being evolved, 
j=1...4710 spanning across the total number of weights and 
biases needed for each network being involved.  Rj is a 
standard Gaussian random variable re-sampled for every j 
and  

08535.021 =→=− ττ jR

D. External Observers 
During simulation, neural networks (after tournament 

selection) were compared with computer players (external 
observers) through Othello game competitions to provide an 
independent monitor of the “fitness” of the population as 
evolution progressed. The computer player employed the 
Fail-Soft Alpha-Beta (FAB) Algorithm [5] at variable ply-
depths, along with a deterministic evaluation function or 
strategy. Comparison started with each neural network 
competing with the computer player playing at ply-depth of 
zero (the same ply-depth used by neural network). For every 
network win, the relative level of play of the external 
observer was raised by increasing its ply-depth by two. It 
should be emphasized that the results of this competition are 
not available to the neural networks themselves. 

Four distinct fixed strategies were used to monitor the 

Fig. 7. Evolution in playing ability of the networks within the range 
4500 to 5600 generations.  Networks were evaluated at every generation 
by playing against the piece differential strategy player, with the ply-depth 
being increased in steps of two until the network lost. Number of networks 
that can defeat the fixed strategy player playing at ply-depth of (a) two (b) 
four  and (c) six.

Fig. 6. Evolution in playing ability of the networks within the range
4500 to 5600 generations.  Networks were evaluated at every generation
by playing against the positional strategy player, with the ply-depth being
increased in steps of two until the network lost. Number of networks that
can defeat the fixed strategy player playing at ply-depth of (a) two (b)
four  and (c) six. 

Fig. 8. The average survival time in generations of the neural networks as a 
function of generation
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evolution of the neural networks: a positional strategy 
(evaluation function based on the positional component of 
Iago's strategy of Iago [7]), a piece differential player who 
for a given board position sought to maximize the number of 
pieces the board, a mobility player who seeks to maximize 
the number of available moves and the complete expert 
strategy of Iagno version 22.3 (June 30, 2008) [8]  During 
the fixed strategy comparison, all the neural networks played 
black (generally considered to be a handicap compared to 
the white) and used ply-depth of zero.  

II. RESULTS 
Fig. 4 compares the performance of the neural networks 

with that of a computer player using the positional strategy 
to evaluate the quality of a move, while Fig. 5 compares the 
performance of the neural network with that of a computer 
player using piece differential as the sole means of 
evaluating the quality of a move.  

Let us consider first the performance of the neural 
networks relative to the positional player.  After only 100 
generations, over half of neural networks have learned to 
defeat the positional strategy playing at a ply-depth of two 
despite the fact that they are playing black.  While a majority 
of networks quickly learn to defeat the ply-depth=2, it takes 
another 6000 generations for essentially the whole 
population to consistently maintain this level of 
performance. Correlated to this is the fact that only after 
4000 generations, do we see performance improving such 
that the networks that a shift from defeating ply-depth of two 
to ply-depth of four takes place. Around generation 4500 
there sudden improvement with some neural networks 
learning to defeat the positional player with a ply-depth=6.  
As can be seen in the figure the lifespan of these exceptional 
neural networks is quite short with the play of the best 
networks dropping back quickly.  As will be discussed later, 
we believe that this is due to the networks becoming overly 
specialized at this point -- developing a specialized strategy 
to defeat the positional player that is not applicable for other 
playing strategies.    Over the next 3500 generations an 
increasing number of networks develop the ability to defeat 
the ply-depth=4 positional player.  By generation 7000 
essentially all networks have obtained this ability.  It is 
significant to note that this ability is not lost over time.  
However, despite one attempt at around generation 7000 it is 
not possible for the networks to defeat the ply-depth=6 
player.   

Fig. 5 shows that these same neural networks evolved at 
the end to outperform the piece differential as well.  By the 
100th generation, over 25 neural networks can defeat ply-
depth two piece differential strategy.  However, in contrast 
to their performance against the positional player, they are 
unable to maintain this level with the level of play appearing 
to be sporadic., By generation 3000, the neural networks 
appear to loose all ability to defeat the piece differential 
player.  It is only in the range between generation 4000 to 
5000 does the play relative to the piece differential player 

improve drastically.  In contrast to play with the positional 
player, in which networks first learned to defeat a ply-
depth=2 player before learning to defeat the ply-depth=4 
player, there is a sudden shift being unable to defeat the ply-
depth=2 player to being able to defeat a ply-depth=6 player.  

In order to investigate the change in playing competence  
around generation 4500, we have increased the sampling rate 
from every 50 to every generation in this region. so as to be 
able to see how the strategy improvement occurred. Figures 
5 and 6 compare the performance of the neural networks 
with that of a computer player using the positional strategy 
and piece differential strategies, respectively. Considering 
first the positional strategy. Against ply-depth of two 
positional strategy (Fig.6b), the key change of the neural 
networks’ ability happened over 40 generations starting from 
generation 4525. This improvement is quickly followed, 
with a delay of about 10 generations, by a considerable 
portion of the networks learning to defeat the positional 
player playing at ply-depth=4. The improvement in play 
relative to the piece-differential player is not, surprisingly, 
coincident with the improvement seen with respect to play 
against the positional player but rather delayed by about 15 
to 20 generations.  Perhaps more amazing is the fact that the 
jump is from not being able to defeat a ply-depth=2 strategy 
to being able to defeat a ply-depth=6 strategy and that this 
ability is gained by about 50% of the population in only 
about 11 generations.  We note that the networks have 
gained this ability without explicitly being given any piece 
differential information as was the case in previous 
simulations [3].  

Next we compared the ability of the neural networks with 
the simple mobility strategy.  At the beginning, the networks 
slowly learn to defeat pure mobility strategies with 
considerable improvement being seen in the range from 
generation 4000 to generation 5000.  However, after this 
generation, despite improved play against the positional and 
piece differential players, the networks seem to have lost all 
ability to defeat the mobility strategy operating at a ply-
depth greater than themselves.  In addition, they never regain 
the ability.  Finally, in competition with the general expert 
strategy Iagno [8], the evolved neural networks exhibited 
good performance when playing at equal ply-depths.  

In Fig. 8 we plot the average survival time of the neural 
networks as a function of generation.  Before the generation 
4000, the average survival time is less than 10 generations. 
After the improvement in play occurs (~generation 5000) the 
survival time starts to slowly increase reaching over 600 
generations by generation 10000 when the simulation was 
stopped.  At the 10000th generation, the average survived 
times is already reach 600 generation.  It would seem that 
the evolutionary algorithm has converged to a solution that 
can defeat the positional strategy playing at ply-depth=4, the 
piece differential strategy playing at ply-depth=6 and the 
mobility strategy playing at ply-depth=0. In repeating 
Chong's simulation [3], we found no increase in network 
survival time over the simulation window.   
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III. DISCUSSION 
In this paper we have compared the performance of our 

neural networks with four different strategies.  One question 
that arises with regard to these strategies is whether there is 
one best strategy.  Unfortunately this is a difficult question. 
Playing at a ply-depth=0, a White positional player can 
defeat the piece differential strategy but loses to the mobility 
strategy.  The White piece differential player can defeat both 
the positional and mobility strategies, while the White  
mobility strategy can defeat the positional and piece 
differential strategies.  In addition, the positional player can, 
on occasion, defeat the combined expert strategy used in 
Iagno (Iagno incorporates a series of 8 random moves in its 
opening).  However, at a ply-depth of 2, the White positional 
player loses to the piece differential player. This strongly 
suggests that there is not one unique strategy that can defeat 
all comers.   

The current simulation has shown that while a given 
neural network strategy cannot maintain a high level of play 
against all opposing fixed strategies, networks can be 
evolved to play reasonable games against all strategies while 
specializing in defeating some strategies. (Note that neural 
networks control the weaker black player when competing 
with the fixed strategies.)  The fact that the evolved neural 
networks perform well against the positional player is not 
surprising as they have been given spatial information and 
are allowed to evolve their own weighted piece counter.  On 
the one hand, it is not unsurprising that they had difficulties 
when playing against a mobility player using a high ply-
depth of look-ahead as the networks were not given any 
mobility information.  On the other hand, it is quite 
interesting that without piece differential information the 
neural networks can evolve to crush the piece-differential 
player.    

In order to compare with the results for the spatial 
processing layer of Fogel [2] and Chong [3] it is necessary to 
speak in terms of the difference in ply-depth used by the 
strategies. In other words, if we define the ply-depth being 
played by the neural networks as n, the neural networks in 
Chong's work learned to play at a level of n+4 against both 
piece-differential and positional players in a period of 1000 
generations.  As can be seen in their work, there is 
considerable noise even until the end of the simulation.  In 
contrast, in the current simulation, using a different spatial 
layer and neural network having 50% less nodes, and in 
which comparison was made with a stronger positional 
player, networks performed at a level of n+4 and n+6 against 
the positional and piece-differential players respectively.  In 
addition, the more natural sampling pattern coupled with a 
fair tournament selection reduced noise allowing the 
network strategies to converge as indicated by the increase 
network survival time.   
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