

Translation：J D White（Bench 6）

1．Theory（See Online Links）

2．實 $>$ 驗碚－器

Chinese	English Name	Label
架装）	Helium－neon laser（with laser frame）	HeNe
45 deg 反点射空鏡是組品＊	mirror group，	
	optical tables（including air compressor）	
可至調离式》光各圈含	adjustable aperture，	
	support rods，	
	support base，	
	pinhole（ $100 \mu \mathrm{~m}$ ）＋Holder	PH
	Single axis stage with micrometer	X－stage
	Paper Screen	SCR
	Photodiode	PD
	Objective Lens（10x）	OBJ

3．惯 ${ }^{\text {P }}$ 騟市目区的名（Purpose）

－To observe the diffraction pattern of a small hole and to use the information to calculate the laser wavelength
－To observe the optical phenomina associated with Fresnel Zone and Fresnel Zone Plates

4.1 圓岁孔害繞晶射坔 Circular Aperture Diffraction（Farfield）
a．Collimate laser so height parallel to the optical table
b．Place Spatial filter（ 100 um pinhole，don＇t mount objective lens）in the beam path（PH）．
1．Place the support rods，seat and stage on the Optical Table．
2．Place the screen on rail after spatial filter
3．Adjust the $x-y$ position of the pinhole so that the laser beam passes through and you can

diffraction rings on the screen
c．Taking into account the radius of the pinhole（b），the radius of the diffraction rings（y），distance between the screen and pinhole（L），the order of the Airy Fringe（m），making use of equation 6 （reproduced below），calculate the wavelength of light (λ) and its standard deviation（ σ ）

$$
\begin{equation*}
m \lambda=b \sin (\theta) \approx b \tan (\theta)=b\left(\frac{y}{L}\right) \rightarrow \lambda=\frac{b}{m} \frac{y}{L} \tag{6}
\end{equation*}
$$

d．Compare your calculation results with the actual wavelength of 632.8 nm ．

a．Replace the screen with the Photodiode mounted on the X－stage（to allow movement perpendicular to the laser beam
b．Map the intensity as a function of position（x）measured from center of diffraction pattern．

Measure in 1 mm intervals over a range of 40 mm ．
4.3 圆岁孔近要場絰量射至 Nearfield Diffraction

50 cm

a．Replace the Photodiode with the screen and mark position of the laser center on the screen．The separation between the screen and the Pinhole should be $\sim 50 \mathrm{~cm}$
b．Insert the 10x objective lens and the pinhole．Adjust the XY position of pinhole so the laser still hits the same point on the screen
c．Using the micrometer（z－axis），approach the objective lens to the pinhole．Observe how the pattern changes on the screen．When the distance between the objective lens is in the farfield （Fraunhofer Conditions），the center of the pattern will be a bright spot．
d．Continue to rotate the micrometer．When the conditions of the distance between the objective lens and a pinhole are in the near－field（Fresnel）conditions，the center will become a dark spot．
e．Record the positions on the micrometer when the bright spot becomes a dark spot．Do this for 5 bright／dark spot changes．
f．Use equation（5），reproduced below to calculate the size of the distance between the focal spot of the objective lens and the aperature（g）

$$
\begin{equation*}
\Delta g=\lambda \times\left(\frac{g}{r_{o}}\right)^{2} \rightarrow g=r_{o} \sqrt{\frac{\Delta g}{\lambda}} \tag{5}
\end{equation*}
$$

5.1 圓岁孔繞禺射艮 Circular Aperture Diffraction（Farfield）：Dark Fringes

b （已－知 known）$[\mathrm{mm}]=$	$\mathrm{L}[\mathrm{mm}]=$

Step	\mathbf{m}	$\mathbf{y}(\mathbf{m m})$	$\lambda[\mathbf{n m}]$	$\mathbf{d}_{\mathbf{i}}$
1	1.22			
2	1.64			
3	2.23			
4	2.68			
5	3.24			

$<\lambda>=$	$<\sigma(\lambda)>=$	$\lambda=<\lambda> \pm<\sigma(\lambda)>=$	$\mathrm{e}=$

 aperature diameter（d）$=0.1 \mathrm{~mm}$（Measurement every 1 mm ）

Location																				
Intensity																				

Location																				
Intensity																				

5.3 圓动孔愿近贵場繞思射坴 Near－field Diffraction

a．Dark Fringes：Repeat Measurement 5x

Measurement	$\Delta \mathbf{g}$	\mathbf{g}	$<\mathbf{g}>$
1			
2			
3			
4			
5			

b．Moving the micrometer in one direction，sequentially record the positions of 5 dark fringes

Measurement	$\Delta \mathbf{g}$	\mathbf{g}	
1			
2			
3			
4			
5			

