(ne10) Current & Resistance 電流和電阻


Review: Capacitors ΔV = Q/C (finding equivalent capacitor: Q, ΔV don't change)

Ceq = SUM Ci 1/Ceq = SUM 1/Ci

Key Points

Current Density

$$ { \vec J = \, n \, e \, \vec v_d \, = \, n \, e \, \left( { {e \tau} \over m} \vec E \right) \equiv \sigma \vec E \equiv {1 \over \rho} \vec E \, \,\, [Am^{-2}] }\\ $$

Ohm's Law

From Basic Physics withAssumptions
$$ I \equiv \iint \vec J \cdot d \vec A = {1 \over \rho} \iint \vec E \cdot d \vec A $$ ρ≠f(x,y,z) → drift velocity linearly (only) depends on E-field (τ = C)
$$ I = {1 \over \rho} \iint \vec E \cdot d \vec A = {1 \over \rho} \vec E \cdot \iint d \vec A $$ E is constant across the conductor cross section
$$ I = {1 \over \rho} \vec E \cdot \vec A = {1 \over \rho} {\Delta V \over L} A $$ E is ⊥ to conductor cross section. E is constant along wire.
$$ \rightarrow I = {A \over {\rho L}} \Delta V \equiv {{\Delta V} \over R}\\ $$

Kirchoff's Laws

1: Energy Conservation$$ \Delta V_{closed \, loop} = \sum \Delta V_i = 0 \, \\$$
2: Charge Conservation$$ \sum I_{in} - \sum I_{out} = 0 \\$$

Other

PBL Comments

Lecture Power Points: Current (J & I) and Resistance (R)

Knight Chapter 27

Home   Schedule   Guided Discovery
C G White (白愛恩), J D White (白小明)
baixiaoming AT gmail.com