Building Circadian Effective Spectra: A C Language Toolkit
Readme

Jonathon David White
Version: November 19, 2024

0. Table of Contents

0. TabIe OF CONTENLS.eiiutiitieeiieet ettt ettt et et e et e st e et e e beeeabe e beeeabeenbeeenbeenseesnneas
1. General INfOrmMAatioN.c.oiiiiiiiiiiieeeet ettt et sttt ettt e s seeens
2. Preparation (MS-WINAOWS)......c.coiriuiiiiiieiiiieeeieeesieeestee et eeiteesteeesaeeesbeeesssaessssaeensseeessasensseennes
2.1 Download the SOTtWATE........cociiiiiiiiiee ettt
2.2 Set Up the ENVITONMENL........ccoiiiiiiiiiieiieiecie ettt ettt et e seaeesseessaesnsaeseneesseensns
3. Running Demonstration to Create Graphs in Paper (MS-Windows)...........cccccvveieeiiiieecciieeeecneennn
AL TNPUL FILES...oioniiiiieeiieeee ettt ettt e bt et e et e e s aaeesbeessaeenbeeesbeenbeensaeensaennseenbeennnas
4.1 Weighting Of LEDS.....cciiiiiiiiieeeeecee ettt et e et e st e et e st e e s taeessseeesssaaennseeeennnas
4.2 Lighting configuration (lightCONfig.COV)......cuiiiiiiiiiiiiiieeiieie e
4.3 Optimization GOalS (ZOAL.CSV)....ciiuiiiiiiieeiiiteeie ettt et e e sae e e saee e s aaeeenaeeeaes
4.4 LED strip information (2 fIle8)......c..eiieiieiiiiieiiieeeieee ettt eteeeeree et saee e eesaaeeeaaae e
4.5 OPLICAL CONSLANTS. ...cuviiuiieiieeiieriieeteestie et estteeteeteeesbe e seeseseesseessseeseessseesseessseenseessseesseessseenses
TR o0 (07 ;10 B S (0) USSP
5.1 Preparing Input SPD files (Skip if using included SPDs or have in uW/nm)..........ccccceeueenn.
5.2 Main Program WhiteSPD()........cceiiiiiiiiiieiii ettt et ae e et e e e enaaeeenes
5.3 Creating @ 24-hr SPECIIUML......ccutiiiriiiriieieiiteie ettt ettt ettt ettt ettt st sbe et seeenaeeneens
54 CLEANINGZ UP.eeeutiieiiieeiiiieeiieeeitee ettt e ettt e stteesbteesatee e steeensteeeassaeansseeansseesnsseeanseeensseesnsseesnsseessees
0. FUNCHION TT@E......eiiiiiiiiiie et ettt e sttt e ettt e et e e estaeeeabeeessaeeessaeeessseeassaaesssaeessseeenssesennses

1. General Information

The program (whitespd.c) builds and calculates optical parameters and optimizes SPDs for
LED strip lighting to produce energy-efficient white lighting. Additional routines allow a 24-hr
dynamic lighting system to be simulated.
(c)2023 Jonathon David White (jonathondavid@gmail.com)

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 1/10

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program. If not, see https://www.gnu.org/licenses/gpl-3.0.en.html

If you choose to make use of this program or subroutines in your work, we would appreciate
it if you would cite our paper "Building Circadian Effective Spectra: A C Language Toolkit",
Leukos QQQ (2024), by Md Azaharuddin Ansari and Jonathon David White (doi:
10.1080/15502724.2024.2423721) in which we discuss the logic and the usage of this program in
designing and building dynamic white lighting systems.

You may download the latest version of the code from https://software.whiteslight.com/

2. Preparation (MS-Windows)
2.1 Download the Software
a. Download and unzip whitespd() in the C directory

b. If not already on your computer, download and unzip MinGW in the same directory. This is

used to compile the C language code.

c. If not already on your computer, download and unzip gnuplot() in the same directory. This is

used to graph the files generated by whitespd().

d. Check that your directory structure looks like:
—C:/whitespd
—C:/MinGW
—C:/gnuplot
2.2 Set Up the Environment

a. Run “0setup.bat” in the directory whitespd. This will create the required directory

structure, copy other files into whitespd() and provide a command line prompt.

b. Run “1setpath.bat” from the command prompt. This will add gnuplot and MinGW port of

gcc to path directory (it will look for gnuplot and MinGW in the C directory or the same base
directory as whitespd()

3. Running Demonstration to Create Graphs in Paper (MS-Windows)

Run “2demo . bat” to run the program and create all the plots shown in the paper "Building

Circadian Effective Spectra: A C Language Toolkit". It will:

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 2/10

../../../gnuplot
https://software.whiteslight.com/
https://www.gnu.org/licenses/gpl-3.0.en.html

a. Prepare required input files (cf Fig. 1 in the paper')
1. Copy the lighting configuration from the demo directory (lightconfig.csv)
2. Copy Optimization Goals from the demo directory (goal.csv)
3. Copy spectrum weighting files from the demo directory (w_*.csv). This provides the
program information about which LED strips to include when building the SPD.
4. Create SPD (radiant flux/nm) for the Red LED strip (SPD files are already in directory in)
i. Call procOcean() to convert the ocean optics SPD file for Red and Warm White strips
(counts/nm) into 2 column files
ii. Call calibrate() to convertthe measured Red LED file into radiant flux/nm,
assuming that the Warm White strip spectrum also has a NIST calibrated spectrum (radiant
flux/nm)
iii. Call gnuplot() to plot the files for user verification

b. Callwhitespd() inread mode to calculate the optical parameters and then plot the input
spectra (Fig. 2 in the paper)

c. Callwhitespd() inread mode followed to build spectra suitable for morning, afternoon,
evening, and night, and calculate the optical parameters and plot (Fig. 3 and Table 2 in the
paper)

d. Call dayinterp() to interpolate between the SPD to develop a 24-hour lighting schedule.

e. Call whitespd() in read mode followed by gnuplot() to calculate and plot optical parameters
as a function of time (Fig. 4,5, and 6 in the paper)

f. Call day2esp() to convert the schedule into a hard-coded schedule to be used to control
lighting in the room shown in Fig. 7 of the paper)

4. Input Files
4.1 Weighting of LEDs

a. The first line is required and specifies
—number of unique LEDs to use in building SPDs
—path and file names (no extension) of all input SPDs

—e.g.:2,in/wwl9,in/cwl9,

b. subsequent lines (are used only when whitespd() is reading weights, ignored of optimization)

—output file name (no extension)

1 In this file, references to figures and “paper”, refers to "Building Circadian Effective Spectra: A C Language
Toolkit", Leukos QQQ (2024), by Md Azaharuddin Ansari and Jonathon David White (doi:
10.1080/15502724.2024.2423721)

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 3/10

—fraction of full power for each input LED strip
—e.g.: fname, 0.90,0.5

4.2 Lighting configuration (1lightconfig.csv)

This file scales the predicted output illuminance. The first 2 lines are measured in the room
where the system is deployed with any LED strip. The third line is the simulation output for the
same configuration when the measured Ix is set to 1 in the program. Here is an example of this

input file:

0.626,1in situ ratio of vertical/horizontal illuminance
991, measured horizontal illuminance at 1.2 m height [1x]
289113, simulated horizontal illuminance [1x]

a, measured by Ansari

measured on 231023 in YZU-r70723 (Taiwan)

4.3 Optimization Goals (goal.csv)

This file contains the optimization goals and the criteria employed to reject SPDs as being
unsuitable. The first column specifies
—the maximum acceptable value for the parameter (10),
—the minimum acceptable value for the parameter (-10),
—the parameter is to be maximized (+1)
—the parameter is to be minimized (-1)
—the parameter should not be considered in the optimization routine (0)
The second column provides the minimum or maximum value of the parameter. The third column
provides the parameter's name, which the program ignores. The following is a goal file used for
maximizing m-EDI efficiency [1x/W] under the constraints that Duv<|0.006|, CCT<6500K and CRI-
Ra>80 and that m-EDI >250 Ix. These conditions are suitable for midday.

10, 0.006, Duv,

10, 6500, CCT,

-10, 80, CRI-Ra,

0,0, CRI-RX,

0,0,a-opic s-cone ELR

0,0,a-opic m-cone ELR

0,0,a-opic l-cone ELR

0,0,a-opic rhodopic ELR

0,0,a-opic melanopic ELR

0,0, photopic illuminance [1x],

-10, 250, m-EDI [1x],

0,0,irradiation horizontal plane,

0,0,cost upfront,

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 4/10

0,0, photopic 1x/W,
1,0, m-EDI 1x/W,

The program requires that all parameters be specified in this file, even if they are to be ignored in
the optimization procedure. For early evening lighting, one would want to maximize the photopic
illuminance efficiency [1x/W] while maintaining a minimum level of photopic illuminance.

4.4 LED strip information (2 files)
Two files are required for each type of LED. The first file (* . csv) contains the SPD of the

LED (nm, uW/nm) from 380nm to at least 780nm. If the correct units are not used (e.g., counts/nm
rather than uW/nm), the simulation will give incorrect results. The format of the file is as follows
where the first column is the wavelength [nm] and the second column the radiant flux [uW/nm]

380,1.27e-001
381,1.24e-001
382, 3.03e-001

The second file (*_d. csv) provides the cost/m, W/m and strip information formatted as:

2.35, US$/m
18, W/m
bl19cw_60, supplier strip type and LED/m

NIST-calibrated spectra of SPD of many different strips (that we have measured) are included in the
subdirectory 1in
4.5 Optical Constants

These files are included with the program and downloaded from the CIE website. It includes

the files necessary for calculating the a-opic parameters, CRI, and CIE1931.

5. Program Flow

5.1 Preparing Input SPD files (Skip if using included SPDs or have in uW/nm).
a. Take experimental spectra of LEDs [380 780] nm

1. Optimize the spectrometer time constant (tc) to use full count range
2. Take all spectra under similar conditions
b. Convert the spectrometer output to 2 columns, comma-separated data, and scale by the time
constant to get counts/s. (In 2demo.bat, procOcean() does this for files measured using an

Ocean Optics spectrometer) These files should be stored with the extension . txt

c. If available, measure one spectrum using a NIST-calibrated integrating sphere (if available).
Save the SPD (uW/nm) with the extension .csv
1. Calibrate all the measured SPDs using the spectra obtained using the NIST calibrated sphere

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 5/10

where nameTST is the SPD to be calibrated (no extension), and fnameSTD is the name of the

NIST calibrated spectra pair. For example:
calibrate fnameTST standard fnameSTD
d. If a NIST calibrated spectrumm is unavailable, convert the SPDs from counts/s to uW/nm. For
example.

calibrate fnameTST counts2energy

5.2 Main Program whiteSPD()
a. Overview

The control program in this software in whitespd() The format of the program call is:

whiteSPD weight.csv mode flgSaveSPD
where the first parameter is a file that contains the names and weights of the LED strips (cf §3.1),
the second parameter is the mode [read | brute | perm], and the final parameter flgSaveSPD is 0
(don’t save the SPD) or 1 (write the SPD to a file).

In read mode, the weights of the LED strips are read from the file weight, parameters
calculated, and the SPD plotted (if figSaveSPD=1). In the optimization modes, only the first line of
the weight file is used to specify the SPDs to be used as input.

In brute force mode, the weightings of each SPD are generated from 0.0 to 1.0 with an
increment input by the user. This is exhaustive but slow. A step size of 0.05 can provide results for
systems with up to 5 LEDs in a reasonable time.

Permutation mode is like brute force, except it only builds unique SPDs. For example,
assume [have a two-LED system with Warm White and Cool White strips. The SPD of 1% Warm
White and 1% Cool White is identical, minus a scale factor, with 100% Warm White and 100%
Cool White. In this case, the program only builds the SPD with the highest radiant flux and
evaluates this. With the current speed of a notebook computer, this is required when the increment
is 0.01 (1%), and the system has 5 or more distinct input SPDs.

b. Program Structure

main() exists only to call the function whitespd() .

whitespd() first initializes the variables by calling readOpticalConstants() to read
the optical constants, readLightConfig() to read the room lighting configuration and
readGoal() to read the simulation goals. It then reads the weight file to determine the SPDs to
include in building the spectra and calls readSPD() to read the csv files describing each strip

(SPD and power consumption).

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 6/10

It then enters the main loop (cf. Fig. 1 in paper) and calls getWeight () is called to get the
weights for the next SPD to be evaluated. getWeight () returns the weight for each SPDs based
on the mode chosen on the command line. Based on these weights, bui LdSPD () is called to
build the combined SPD. Next calcSPDpar () is called. This function is the core of the
program. Its operation is detailed below:

1. calcCIE1931() is called to calculate the CIE coordinates

2. calcCCT() is called to calculate CCT

3. If CCT is outside the minimum or maximum limits specified in the file goal.csv, the SPD is
rejected, and control is returned to whitespd()

4. calcDUV() and calcDU Vtarget() are called to check the value of Duv tolerance.

5. If Duv tolerance exceeds the maximum limit, the SPD is rejected, and control is returned to
whitespd(). If this is a parameter to maximize or minimize, points are given to the SPD’s
score.

6. calcCRI() is called calculate the CRI-Ra and Rx.

7. If CRI is lower than the minimum limit, the SPD is rejected, and control is returned to
whitespd(). If this is a parameter to maximize, points are given to the SPD’s score.

8. calcAlphaOpicELR() is called to calculate the ELR coefficients, illuminance and m-EDI
illuminance in the horizontal direction

9. Photopic and m-EDI illuminance are scaled by the light configuration and the m-EDI
illuminance is obtained in the vertical direction in accord with specifications

10. If any of the ELR coefficients or the photopic or m-EDI illuminance is outside of the limits,
the SPD is rejected, and control is returned to whitespd(). If the goal is to optimize any of
these parameters, points are given to the SPD’s score.

11. After calculating the upfront cost [$] and the electricity costs [W], the efficiency of photopic
and m-EDI are calculated.

12. If any of these are outside of the limits, the SPD is rejected, and control is returned to
whitespd If the goal is to optimize any of these parameters, points are given to the SPD’s
score.

13. Control is returned to whitespd().

Based on the mode, whitespd() either writes the SPD’s optical parameters to a file (read)
or checks if this spectrum best meets the optimization goals and if so saves it as the temporary best
SPD. Control then loops back to process the next SPD's weights. Once all weightings have been
processed, the optical parameters of the highest-scored SPD are written (brute or perm mode)

c. View graphs

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 7/10

Gnuplot() is used to view graphs. To view the SPDs, the control file is combine.plt. To view
the calculated optical parameters as a function of the time of day, the input control file is

spdpar_day.plt. Thus, we call either:

gnuplot combine.plt
gnuplot spdpar_day.plt

In the second case, the names of the files are the time of day in seconds.
5.3 Creating a 24-hr spectrum

Once the SPD has been optimized at critical times (e.g. morning, noon, early and late evening
and night), the function dayinterp() can be used to interpolate between the points. It reads from
the weight file (cf §3.1) the time of day in seconds (1% column) and the weightings of the input
SPDs at that time. It then interpolates to build a 24-hour spectrum, which it writes in the file
dayinterp.csv. The parameters for the 24-hour schedule can then be viewed by calling
writespd() in read mode and then using gnuplot () to plot the changes in optical parameters
throughout the day. For example,

dayinterp w_build.csv
whitespd dayinterp.csv read 0
ghuplot spdpar_day.plt

5.4 Cleaning up

After running the program, the batch file “clean.bat” can be used to delete all the files

generated in the simulation

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 8/10

6. Function Tree

6.1 whiteSPD

main()
LprnLog()
LwhiteSPD()

LreadGoal()
LreadGoalLine()

LreadLightConfig()

LreadOpticalConstants()
LreadInterpSPDY()

LwriteSPDparHeader()

LreadSPDY)

LoetWeight()
LreadWeight()
LoenWeightBruteForce()
LgenPerm()

LbuildSPD()

LwriteSPD()

LcalcSPDpar()
LcalcCIE1931()
LealcCCT()
LealcUV()
LcalcDUV()

LcaleDU Vtarget()
LcalcCRI()
LcalcCIE1931()
LealcUV()
LcalcCD()
LcalcRef BlackBody()
LcalcRef StandardIlluminateD()
LcalcUVkibar()
LcalcUV_TCS()
LealcUVW()
LcalcAlphaOpicELR()
LcalcIrrad()
LcalcCLA()
LwriteSPDpar()
LplotSPD()

LonuplotSPDopen()

LonuplotSPD()

LonuplotSPDclose()

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 9/10

6.2 dayinterp

main()
Ldayinterp()
LreadWeight()
LsimuSchedule()
LecalcCS()

6.3 day2Zesp

main()
Lday2esp()
LreadWeight()
LwriteSch2Esp()

6.4 post

main()
LreadGoal()
LooalMinMax()
LreadSPDpar()
Lflg update()
LwriteSPDpar()

6.5 calibrate

main()

Lcalibrate()
LreadInterpSPDY()
LreadSPD()

LwriteSPD()

LonuplotCMD()

6.6 procOcean

main()

Building Circadian Effective Spectra: A C Language Toolkit — readme pg. 10/10

	0. Table of Contents
	1. General Information
	2. Preparation (MS-Windows)
	2.1 Download the Software

	a. Download and unzip whitespd() in the C directory
	b. If not already on your computer, download and unzip MinGW in the same directory. This is used to compile the C language code.
	c. If not already on your computer, download and unzip gnuplot() in the same directory. This is used to graph the files generated by whitespd().
	d. Check that your directory structure looks like:
	2.2 Set Up the Environment
	a. Run “0setup.bat” in the directory whitespd. This will create the required directory structure, copy other files into whitespd() and provide a command line prompt.
	b. Run “1setpath.bat” from the command prompt. This will add gnuplot and MinGW port of gcc to path directory (it will look for gnuplot and MinGW in the C directory or the same base directory as whitespd()
	3. Running Demonstration to Create Graphs in Paper (MS-Windows)
	a. Prepare required input files (cf Fig. 1 in the paper)
	1. Copy the lighting configuration from the demo directory (lightconfig.csv)
	2. Copy Optimization Goals from the demo directory (goal.csv)
	3. Copy spectrum weighting files from the demo directory (w_*.csv). This provides the program information about which LED strips to include when building the SPD.
	4. Create SPD (radiant flux/nm) for the Red LED strip (SPD files are already in directory in)
	i. Call procOcean() to convert the ocean optics SPD file for Red and Warm White strips (counts/nm) into 2 column files
	ii. Call calibrate() to convert the measured Red LED file into radiant flux/nm, assuming that the Warm White strip spectrum also has a NIST calibrated spectrum (radiant flux/nm)
	iii. Call gnuplot() to plot the files for user verification
	b. Call whitespd() in read mode to calculate the optical parameters and then plot the input spectra (Fig. 2 in the paper)
	c. Call whitespd() in read mode followed to build spectra suitable for morning, afternoon, evening, and night, and calculate the optical parameters and plot (Fig. 3 and Table 2 in the paper)
	d. Call dayinterp() to interpolate between the SPD to develop a 24-hour lighting schedule.
	e. Call whitespd() in read mode followed by gnuplot() to calculate and plot optical parameters as a function of time (Fig. 4,5, and 6 in the paper)
	f. Call day2esp() to convert the schedule into a hard-coded schedule to be used to control lighting in the room shown in Fig. 7 of the paper)
	4. Input Files
	4.1 Weighting of LEDs
	a. The first line is required and specifies
	b. subsequent lines (are used only when whitespd() is reading weights, ignored of optimization)
	4.2 Lighting configuration (lightconfig.csv)
	4.3 Optimization Goals (goal.csv)
	4.4 LED strip information (2 files)
	4.5 Optical Constants
	5. Program Flow
	5.1 Preparing Input SPD files (Skip if using included SPDs or have in uW/nm).
	a. Take experimental spectra of LEDs [380 780] nm
	1. Optimize the spectrometer time constant (tc) to use full count range
	2. Take all spectra under similar conditions
	b. Convert the spectrometer output to 2 columns, comma-separated data, and scale by the time constant to get counts/s. (In 2demo.bat, procOcean() does this for files measured using an Ocean Optics spectrometer) These files should be stored with the extension .txt
	c. If available, measure one spectrum using a NIST-calibrated integrating sphere (if available). Save the SPD (uW/nm) with the extension .csv
	1. Calibrate all the measured SPDs using the spectra obtained using the NIST calibrated sphere where nameTST is the SPD to be calibrated (no extension), and fnameSTD is the name of the NIST calibrated spectra pair. For example:
	d. If a NIST calibrated spectrumm is unavailable, convert the SPDs from counts/s to uW/nm. For example.
	5.2 Main Program whiteSPD()
	a. Overview
	b. Program Structure
	1. calcCIE1931() is called to calculate the CIE coordinates
	2. calcCCT() is called to calculate CCT
	3. If CCT is outside the minimum or maximum limits specified in the file goal.csv, the SPD is rejected, and control is returned to whitespd()
	4. calcDUV() and calcDUVtarget() are called to check the value of Duv tolerance.
	5. If Duv tolerance exceeds the maximum limit, the SPD is rejected, and control is returned to whitespd(). If this is a parameter to maximize or minimize, points are given to the SPD’s score.
	6. calcCRI() is called calculate the CRI-Ra and Rx.
	7. If CRI is lower than the minimum limit, the SPD is rejected, and control is returned to whitespd(). If this is a parameter to maximize, points are given to the SPD’s score.
	8. calcAlphaOpicELR() is called to calculate the ELR coefficients, illuminance and m-EDI illuminance in the horizontal direction
	9. Photopic and m-EDI illuminance are scaled by the light configuration and the m-EDI illuminance is obtained in the vertical direction in accord with specifications
	10. If any of the ELR coefficients or the photopic or m-EDI illuminance is outside of the limits, the SPD is rejected, and control is returned to whitespd(). If the goal is to optimize any of these parameters, points are given to the SPD’s score.
	11. After calculating the upfront cost [$] and the electricity costs [W], the efficiency of photopic and m-EDI are calculated.
	12. If any of these are outside of the limits, the SPD is rejected, and control is returned to whitespd If the goal is to optimize any of these parameters, points are given to the SPD’s score.
	13. Control is returned to whitespd().
	c. View graphs
	5.3 Creating a 24-hr spectrum
	5.4 Cleaning up
	6. Function Tree
	6.1 whiteSPD
	6.2 dayinterp
	6.3 day2esp
	6.4 post
	6.5 calibrate
	6.6 procOcean

